If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+18b+80=0
a = 1; b = 18; c = +80;
Δ = b2-4ac
Δ = 182-4·1·80
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2}{2*1}=\frac{-20}{2} =-10 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2}{2*1}=\frac{-16}{2} =-8 $
| 63-x=78-2x | | 3v+3(2v-6)=7v+4(4v+3) | | 14=(7/24)x | | 7x-(3x+4)=-4x+12 | | 25x=135 | | 14=7/24x | | c2=82 | | 10x^2-6=3 | | -5(2x-1)=2(x-32)-3 | | 150m-75m+47500=51250-175 | | t=35+7×14 | | 13=k/3+9 | | 3x-2=2-+3 | | 14=10+c | | 2(3x+1)^2+50=0 | | 6^x=18 | | 7(u-2)-9=-7(4u+1)-9u | | -287=-7(1+5x) | | 1/2(x-30)=7+6x | | 15-x=x-1 | | 2(3x+1)^2=50 | | 6a÷6=9 | | 5(t-1=4t) | | 5(t-1=4t | | 4+3x=2(-x+8)-32 | | 8-2(5x-1)=0 | | (3+2x)-(3+2×)=5 | | 11x+4=17x-8 | | –2y+1=y–5. | | z-4/3=-5/3 | | 7^x-4=1 | | 90/w=100/110 |